3.780 \(\int \frac{1}{(a+b x)^{3/2} (c+d x)^{3/2}} \, dx\)

Optimal. Leaf size=62 \[ -\frac{4 d \sqrt{a+b x}}{\sqrt{c+d x} (b c-a d)^2}-\frac{2}{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)} \]

[Out]

-2/((b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x]) - (4*d*Sqrt[a + b*x])/((b*c - a*d)^2*Sqrt[c + d*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0104859, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {45, 37} \[ -\frac{4 d \sqrt{a+b x}}{\sqrt{c+d x} (b c-a d)^2}-\frac{2}{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^(3/2)*(c + d*x)^(3/2)),x]

[Out]

-2/((b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x]) - (4*d*Sqrt[a + b*x])/((b*c - a*d)^2*Sqrt[c + d*x])

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{1}{(a+b x)^{3/2} (c+d x)^{3/2}} \, dx &=-\frac{2}{(b c-a d) \sqrt{a+b x} \sqrt{c+d x}}-\frac{(2 d) \int \frac{1}{\sqrt{a+b x} (c+d x)^{3/2}} \, dx}{b c-a d}\\ &=-\frac{2}{(b c-a d) \sqrt{a+b x} \sqrt{c+d x}}-\frac{4 d \sqrt{a+b x}}{(b c-a d)^2 \sqrt{c+d x}}\\ \end{align*}

Mathematica [A]  time = 0.0150307, size = 42, normalized size = 0.68 \[ -\frac{2 (a d+b (c+2 d x))}{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^(3/2)*(c + d*x)^(3/2)),x]

[Out]

(-2*(a*d + b*(c + 2*d*x)))/((b*c - a*d)^2*Sqrt[a + b*x]*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [A]  time = 0., size = 52, normalized size = 0.8 \begin{align*} -2\,{\frac{2\,bdx+ad+bc}{\sqrt{bx+a}\sqrt{dx+c} \left ({a}^{2}{d}^{2}-2\,abcd+{b}^{2}{c}^{2} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(3/2)/(d*x+c)^(3/2),x)

[Out]

-2*(2*b*d*x+a*d+b*c)/(b*x+a)^(1/2)/(d*x+c)^(1/2)/(a^2*d^2-2*a*b*c*d+b^2*c^2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.87535, size = 259, normalized size = 4.18 \begin{align*} -\frac{2 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b x + a} \sqrt{d x + c}}{a b^{2} c^{3} - 2 \, a^{2} b c^{2} d + a^{3} c d^{2} +{\left (b^{3} c^{2} d - 2 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} x^{2} +{\left (b^{3} c^{3} - a b^{2} c^{2} d - a^{2} b c d^{2} + a^{3} d^{3}\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b^2*c^3 - 2*a^2*b*c^2*d + a^3*c*d^2 + (b^3*c^2*d - 2*a
*b^2*c*d^2 + a^2*b*d^3)*x^2 + (b^3*c^3 - a*b^2*c^2*d - a^2*b*c*d^2 + a^3*d^3)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x\right )^{\frac{3}{2}} \left (c + d x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(3/2)/(d*x+c)**(3/2),x)

[Out]

Integral(1/((a + b*x)**(3/2)*(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.28159, size = 192, normalized size = 3.1 \begin{align*} -\frac{2 \, \sqrt{b x + a} b^{2} d}{{\left (b^{2} c^{2}{\left | b \right |} - 2 \, a b c d{\left | b \right |} + a^{2} d^{2}{\left | b \right |}\right )} \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}} - \frac{4 \, \sqrt{b d} b^{2}}{{\left (b^{2} c - a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{\left (b c{\left | b \right |} - a d{\left | b \right |}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(3/2),x, algorithm="giac")

[Out]

-2*sqrt(b*x + a)*b^2*d/((b^2*c^2*abs(b) - 2*a*b*c*d*abs(b) + a^2*d^2*abs(b))*sqrt(b^2*c + (b*x + a)*b*d - a*b*
d)) - 4*sqrt(b*d)*b^2/((b^2*c - a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)*(b*
c*abs(b) - a*d*abs(b)))